

Lineas® Quartz Sensor

For Weigh in Motion

The Lineas sensor is a quartz sensor to measure the wheel- and axle loads and to determine the vehicle gross weight under rolling traffic conditions.

- · Excellent long-term stability.
- · Huge measuring range: from slow to fast freeway speed.
- · Very high natural frequency and signal dynamic.
- Protected from the intrusion of water (degree of protection IP68).
- · Insensitive to temperature changes.
- · Quick and easy installation.
- · Adaptive to different pavement characteristics.
- · Safe mounting into the pavement.
- The sensor surface can be ground up to 10 mm in case of pavement deformations.

Description

The Lineas WIM sensor Type 9195E... is a force sensor with quartz elements. It consists of a light metal profile of which quartz disks are fitted under preload.

When a force is applied to the sensor surface, the quartz disks yield an electric charge proportional to the applied force through the piezoelectric effect.

The electric charge is converted by a charge amplifier into a proportional voltage which then has to be further processed as required.

The sensor has to be integrated into the road surface and is only for permanent installation.

Applications

- Traffic data acquisition (statistics)
- Overload detection
 - Pre selection for static weight controls
 - Auto weight enforcement
 - Bridge protection
- Weigh dependent tolling
- Road research
- · Pavement management system (PMS)

Technical Data

_			
C ~!		~	
36	пs	o	r

Measuring range wheel load	kN	0 150
At a reference tire contact area 20	00 x 320 mm	
(tread length x tread width)		
Max. load-bearing capacity	N/mm²	4,6
of the sensor surface		
Sensitivity, nominal	pC / N	-1,76 ±5 %
Max. sensitivity shift	%	<±3
over sensor length		
Threshold	N	<0,5
Linearity	% FSO	≤±2
Hysteresis	% FSO	≤2
Cable chunking resistance	N	300
Operating temperature range	°C	-40 +80
Temperature coefficient	% / °C	-0,02
of sensitivity		
Insulation resistance	Ω	>1 · 10 ¹⁰
Capacitance		
E1, E2 with 40 m cable	nF	6
E1, E2 with 100 m cable	nF	12

General Data

Cable length (Cable Type K02232D01) m		40/100	
Connect	or		BNC pos.
Weight	E1 with 40 m cable	kg	4,5
	E1 with 100 m cable	kg	5,8
	E2 with 40 m cable	kg	3,7
	E2 with 100 m cable	kg	5,0
Degree o	of protection	EN60529	IP68

1 bar = 10^5 Pa = 10^5 N · m⁻² = 1,0197... at = 14,503... psi; 1 psi = 0,06894... bar; 1 g = 9,80665 m · s⁻²; 1 Nm = 0,73756... lbft; 1 g = 0,03527... oz